Basic Concepts of chemistry

- •Density= mass/volume
- •Celsius to Fahrenheit conversion: °F = 9/5(°C) + 32
- •Celsius to Kelvin conversion: K= °C + 273.15
- •I Atomic mass unit(amu)= 1.66056 * 10^-24

•Molarity (M) =
$$\frac{n \text{ (moles of solute)}}{V \text{ (volume of solution)}}$$

•Dilution formula:

$$M_1V_1 = M_2V_2$$

 M_1 = initial molarity ("stock solution") V_1 = initial volume (Liters)

M₂ = final (desired) molarity

 V_2 = final volume (Liters)

•Atomic mass of an element=

$$\frac{\textit{mass of one atom of the element}}{\textit{mass of } \frac{1}{12} \textit{th part of mass of } C^{12} \textit{ atom}}$$

 $\frac{\textit{mass of one atom of the element}}{\textit{mass of } \frac{1}{16} \textit{th part of mass of } 0^{16} \textit{ atom}}$

mass of one atom of the element
mass of of one atom of Hydrogen atom

- •Relative Atomic mass=
- Average mass of atoms of an element X 12

 Mass of one atom of carbon-12
- •Number of molecules in n moles of substance= $n \times N_A$
- •Mass percentage of an element in a compound=

$$\frac{mass\ of\ that\ element\ in\ the\ compound}{molar\ mass\ of\ the\ compound} \times 100$$

•Mass percent=
$$\frac{\text{Mass of the sloute}}{\text{Mass of the solution}} \times 100$$

- •Avogadro's No= 6.022×10²³
- •Molecular mass = 2 * vapour density
- •Mole fraction of solute = moles of solute total moles in solutions
- •Molality(m) = $\frac{mole\ of\ solute \times 1000}{volume\ of\ solvent\ in\ kg}$

Structure Of Atom

- •Atomic Number(Z) = number of protons in the nucleus of an atom = number of electrons in a neutral atom
- •Relation between frequency, wavelength and velocity of light:

$$c = \lambda v$$

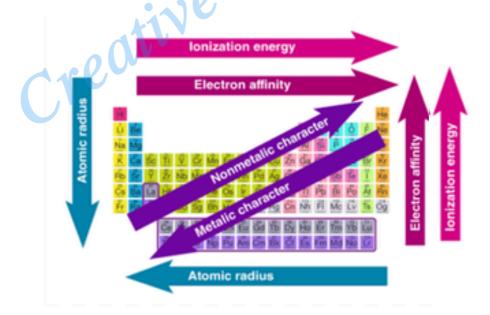
$$V = \frac{c}{\lambda}$$

•Energy of quantum: E = h v

- •Planck's constant, h = 6.6262 x 10-34 J•s
- •The kinetic energy of ejected electron: $h
 u = K E_{
 m max} + W_0$
- •Rydberg's formula: $\bar{v} = 109677(\frac{1}{n_1^2} \frac{1}{n_2^2})$
- •Energy difference during transition of electron: $v = \frac{\Delta E}{h} = \frac{E_2 E_1}{h}$
- •Angular momentum of electron in a stationary state:

$$m_e \, \text{vr} = n. \frac{h}{2\pi}$$
 $n = 1, 2, 3....$

- •radii of stationary states: $\frac{0.529 \text{ n}^2}{Z}$
- •Energy of stationary state of electron: $E_n = -R_H \left(\frac{1}{n^2}\right)$ n = 1,2,3...
- •de Broglie's wavelength, $\lambda = \frac{h}{mv}$
- Heisenberg's uncertainty principle, $\Delta x \ \Delta p \ \geq \ \frac{h}{4\pi}$ $\Delta x = \text{Uncertainty of Position}$ $\Delta p = \text{Uncertainty of Momentum}$
- •Schrodinger equation $\boxed{ \frac{d^2\psi}{dx^2} + \frac{d^2\psi}{dy^2} + \frac{d^2\psi}{dz^2} + \frac{8\pi^2m}{h^2}(E-V)\psi = 0 }$


ψ = wave function m = mass h = plank constant E = total energy V = potential energy

Periodic classification of elements

- •General electronic configuration of s block: ns^{1-2}
- General electronic configuration of p block: ns^2 , ns^{1-6}
- General electronic configuration of d block: $(n-1)d^{1-10}ns^{0-2}$
- General electronic configuration of f block: $(n-2)f^{1-14}(n-1)d^{0-1}ns^2$
- Notation of IUPAC nomenclature of elements:

Digit	Name	Abbreviation	
0	nil	n	
1	un	u	
2	bi	ь. ь	
3	tri	t.	
4	quad	g O	
5	pent	p. 40	
6	hex	h	
7	sept		
8	oct	o	
9	enn	l e	

• Periodic trends of elements in the Periodic table:

Chemical Bonding

• Formal charge: $FC = V - N - rac{B}{2}$

FC = formal charge

 $oldsymbol{V}$ = number of valence electrons

 $oldsymbol{N}$ = number of nonbonding valence electrons

 $B \hspace{0.4cm}$ = total number of electrons shared in bonds

 Dipole moment: (μ) = charge (Q) × distance of separation (r)

Repulsive interaction of electron pairs:

Lone pair (lp) - Lone pair (lp) > Lone pair (lp) - Bond pair (bp) > Bond pair (bp) - Bond pair (bp)

Geometry of molecules (VSEPR theory):

Number of Electron Groups	Lone Pairs = 0	Lone Pairs = 1	Lone Pairy = 2	Jone Pairs = 3	Lone Pairs = 4
2	Linear		en,		
3	Trigonal Planar	Angular or Bent	10		4
4	Tetrahedral	Trigonal Pyramidal	Angular or Bent		
5	Trigonal Bipyramidal	Seesaw Seesaw	T-shaped	Linear	į.
6		**	**		
	Octahedral	Square Pyramidal	Square Planar	T-shaped	Linear

States Of Matter

Gas Laws

I. Boyle's Law:
$$P \propto \frac{1}{V}$$

P = pressure V = volume

$$P_1V_1 = P_2V_2$$

$$PV = k$$

2. Charles' Law: T∝V

T = temperature (Kelvin)

$$\frac{\mathbf{V}_1}{\mathbf{T}_1} = \frac{\mathbf{V}_2}{\mathbf{T}_2}$$

$$\frac{V}{T} = k$$

3. Gay Lussac's Law: $P \propto T$

$$\frac{\mathbf{P}_1}{\mathbf{T}_1} = \frac{\mathbf{P}_2}{\mathbf{T}_2}$$

$$\frac{P}{T} = k$$

Avogadro Law:

$$V \propto n$$

$$\frac{\mathbf{V}_{1}}{\mathbf{n}_{1}} = \frac{\mathbf{V}_{2}}{\mathbf{n}_{2}}$$

$$\frac{V}{n} = k$$

5. Ideal gas equation: PV = nRT

R = gas constant

6. Relation between density and molar mass of gaseous

substance: $d = \frac{m}{V} = \frac{P\mathcal{M}}{RT}$

m is the mass of the gas in g \mathcal{M} is the molar mass of the gas

• Dalton's Law of partial pressure: $P_{total} = \sum_{i=1}^{n} P_i$

Partial pressure in terms of mole fraction:

$$P_{\star} = X_{\star} P_{\tau}$$

where $X_{A} = \frac{\text{moles of gas A}}{\text{total moles of gas}}$

• Vander Waals equation: $\left(p + a\left(\frac{n}{V}\right)^2\right)(V - nb) = nRT$

a: Intermolecular attractive force

b: Volume occupied by one mole of the gas

• Viscous Force $F = \eta A \frac{dv}{dv}$

$$\frac{du}{dy}$$
 = Rate of shear deformation

Thermodynamics

First law of thermodynamics:

$$\Delta U = Q - W$$

 ΔU = change in internal energy

 $oldsymbol{Q}$ = heat added

 $oldsymbol{W}$ = work done by the system

Pressure:

$$P = \frac{F}{A}$$

• Work done : W = - P Δ V

• work done for variable pressure: w = - \(\) d V P e x t

• For isothermal irreversible change $W_{i\to f} = nRT \ln \frac{v_f}{v_c}$

• For isothermal reversible change:

· For adiabatic change:

$$W_{dV} = pdV = dU = mc_V (T_z - T_y)$$

• Ideal gas law: PV = nRT

· Heat capacity:

$$Q=mc\Delta T$$

- Q = heat energy
- m = mass
 c = specific heat capacity
- ΔT = change in temperature

· Relation between heat capacities at constant pressure and $C_p - C_v = R$ volume:

Entropy:

$$S=k_b \ln \Omega$$

- $oldsymbol{S}$ = entropy
- k_b = Boltzmann constant
- ln = natural logarithm
- Ω = number of microscopic configurations

Total entropy change: ∆Stotal=∆Ssystem+∆Ssurr

Ionic equilibrium

• Equilibrium equation:

$$K_{\text{eq}} = \frac{[\mathbf{C}]^c [\mathbf{D}]^d}{[\mathbf{A}]^a [\mathbf{B}]^b}$$

• Equilibrium constant in gaseous systems $K_p = \frac{(P_C^c) (P_D^d)}{(P_A^a) (P_B^b)}$

$$K_{\rm p} = \frac{(P_{\rm C}^{\rm c}) (P_{\rm D}^{\rm d})}{(P_{\rm A}^{\rm a}) (P_{\rm B}^{\rm b})}$$

• Ostwald dilution law:
$$K = \frac{[A^+][B^-]}{[AB]} = \frac{C\alpha \cdot C\alpha}{C(1-\alpha)}$$

$$K = \frac{C\alpha^2}{1 - \alpha}$$

$$pH = -log_{10} [H^+]$$

$$pH = \log_{10} \frac{1}{[H^*]}$$

pOH value:

$$[OH^{-}] = 10^{-pOH}$$

(or)
$$DH = \log_{10} \frac{1}{[H^*]}$$

$$[OH^-] = 10^{-pOH}$$

$$pOH = -\log_{10} [OH^-] \text{ or } \frac{1}{\log_{10} [OH^-]}$$

$$pH + pOH = 14$$

$$pH + pOH = pK_w$$

$$pK_a = -\log_{10} K_a$$

$$pK_a \approx \frac{1}{K_a} \propto \frac{1}{A \text{cidie strength}}$$

$$pH + pOH = 14$$

$$pH + pOH = pK_{w}$$

$$pK_{a} = -log_{10}K_{a}$$

$$pK_a \propto \frac{1}{K_a} \propto \frac{1}{Acidic strength}$$

$$pK_b = -\log_{10} K_b$$

$$pK_{b} = -log_{10} K_{b}$$

$$pK_{b} \propto \frac{1}{K_{b}} \propto \frac{1}{Basic strength}$$

• Ionic product of water: $K_W = [H_3O^+].[OH^-]$

$$K_W = [H_3O^+].[OH^-]$$

$$pKw = pKa + pKb$$

$$KW = 1 \times 10^{-14}$$

$$pKw = 14$$

Ionic equilibrium

Buffer solution:

 $\phi = \frac{Number\ of\ moles\ of\ acid/base\ added\ to\ IL\ of\ solution}{Change\ in\ pH}$

• Solubility:

(s) ∞ Toncentration of common ions ar number of common ions

- Solubility product: K_{SP} = (xs)^x (ys)^y = x^x.y^y.(s)^{x+y}
- Degree of hydrolysis:Salt of weak acid and strong base

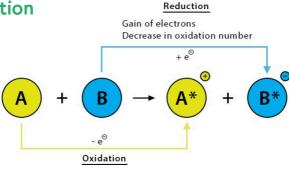
$$\begin{array}{ccc} \mathbf{k_h} & \mathbf{h} & \mathbf{pH} \\ \\ \frac{\mathbf{k_w}}{\mathbf{k_a}} & \sqrt{\frac{\mathbf{k_w}}{\mathbf{k_a c}}} & 7 + \frac{1}{2} \operatorname{pk_a} + \frac{1}{2} \log c \end{array}$$

Salt of strong acid and weak base

$$\frac{k_{w}}{k_{b}} \quad \sqrt{\frac{k_{w}}{k_{b}c}} \quad 7 - \frac{1}{2} pk_{b} - \frac{1}{2} \log c$$

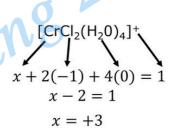
Salt of weak acid and weak base

$$\frac{k_{h}}{k_{a}k_{b}} \frac{h}{\sqrt{\frac{k_{w}}{k_{a}k_{b}}}} 7 + \frac{1}{2}pk_{a} - \frac{1}{2}pk_{b}$$


Salt of strong acid and strong base do not hydrolyse.

• Relation between equilibrium constant, K Reaction quotient, Q and Gibbs energy, G:

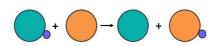
$$K_w = K_a \times K_b$$


Redox Reactions

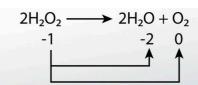
Redox Reaction

Loss of electrons Increase in oxidation number

- Oxidising agent: Acceptor of electrons.
- Reducing agent: Donor of electrons.
- Oxidation number calculations, example:


Types of Redox Reaction

I. Combination reaction:


$$A + B \longrightarrow A B$$

2. Decomposition reaction

3. Displacement reaction:

4. Disproportionation reaction:

Hydrogen

- Preparation
- Laboratory method

$$Zn+2H^* \longrightarrow Zn^{2*} + H_2$$

Commercial method

by electrolysing warm aqueous barium hydroxide solution between N1

Electrodes.

$$C_nH_{2n+2} + nH_2O \xrightarrow{1270K} nCO + (2n+1)H_2$$

- -CO +H, is called water gas.
- Cool Gasification : $C(s) + H_2O(g) \xrightarrow{1270K} CO(g) + H_2(g)$
- ing 2.C -Water- gas shift reaction: $CO(g) + H_2O(g) \xrightarrow{673 \text{ K}} CO_2(g) + H_2(g)$
- Chemical properties

$$H_2(g) + X_3(g) \longrightarrow 2HX(g) (X=F,Cl, Br, I)$$

$$2H_2(g) + O_2(g) \xrightarrow{Catalyst \text{ or}} 2H_2O(I) \text{ H = -285.9KJmol}^{-1}$$

$$3H_2(g) + N_2(g) \xrightarrow{6734 \ 2000 \text{ of th}} 2NH_3(g) H = -92.6 \text{ KJmol-1}$$

$$H_{s}(g) + Pd^{2*}(aq) \longrightarrow Pd(s) + 2H^{*}(aq)$$

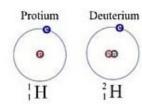
Preparation of hydrogen peroxide

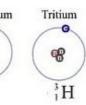
$$BaO_2.8H_2O(s) + H_2SO_4(cq) \longrightarrow BaSO_4(s) + H_2O_2(cq) + 8H_2O(l)$$

- 2- ethylanthraquinol $\stackrel{O_1(air)}{\longleftarrow} H_2O_2$ + Oxidised Product
- Chemical properties

$$PbSO_4(s) + 4H_2O_2(aq) \longrightarrow PbSO_4(s) + 4H_2O(1)$$

$$I_2 + H_2O_2 + 2OH^- \longrightarrow 2I^- + 2H_2O + O_2$$


Hydrogen


• Isotopes of hydrogen

Protium: Predominant from. (1H)

Deuterium: (2H)

Tritium: Radioactive (1 H)

Chemical properties of water

$$H_2O(1) + NH_3(aq)$$
 \longrightarrow $OH^*(aq) + NH_4^*(aq)$
 $2H_2O(1) + 2Na(s)$ \longrightarrow $2NaOH(aq) + H_2(g)$
 $6CO_2(g) + 12H_2O(1)$ \longrightarrow $C_6H_{12}O_6(aq) + 6H_2O(1) + 6O_2(g)$
 $P_4O_{10}(s) + 6H_2O(1)$ \longrightarrow $4H_3PO_4(aq)$

S Block

Chemical properties of alkali metals(group I)

$$4\text{Li} + O_2 \longrightarrow 2\text{Li}_2O; 2\text{Na} + O_2 \longrightarrow \text{Na}_2O_2; M + O_2(MO_2(M=K,Rb,Cs))$$

React vigorously with halogens to form ionic halides

$$M + (x + y) NH_3 \longrightarrow [M(NH_3) \longrightarrow [M(NH_3)_x]^* + [e(NH_3)_y]^*$$

Chemical properties of alkaline earth metal (group 2)

- · Be and Mg are kinetically inert to O and H,O
- · Mg is more electropositive and burns in Air.
- · Ca, Sr and Ba with air form oxide and nitride.

$$M + (x+y)NH_3 \longrightarrow [M(NH_3)_x]^{2+} + 2[e(NH_3)_y]^{-}$$

Important compounds of sodium

(I)Sodium Carbonate(preparation)

$$2NH_3 + H_2O + CO_2 \longrightarrow (NH_4)2CO_3$$

 $(NH_4)_2CO_3 + H_2O + CO_2 \longrightarrow 2NH_4HCO_3$
 $NH_4HCO_3 + NaCl \longrightarrow NH_4Cl + NaHCO_3$
 $2NH_4Cl + Ca(OH)_2 \longrightarrow 2NH_3 + CaCl_2 + H_2O$

S Block

 Important compounds of sodium **Properties of sodium Carbonate**

$$Na_2CO_3$$
. $10H_2O \longrightarrow Na_2CO_3 \times H_2O + 9H_2O$
 Na_2CO_3 . $H_2O \longrightarrow Na_2CO_3 + H_2O$

(ii)Sodium chloride

(iii)Sodium hydroxide

(iv)Sodium hydrogen Carbonate preparation

$$Na_2CO_3 + H_2O + CO_2 \longrightarrow 2NaHCO_3$$

Important compounds of Calcium

(I) Quick lime, Cao(preparation)

Properties

(ii) Calcium hydroxide(preparation)

properties

(iii) Plaster of Paris(

P Block

Chemical properties of group 13 elements

$$2E(s) + 3O_{2}(g) \xrightarrow{\Delta} 2E_{2}O_{3(s)}$$
 $2E(s) + N_{2}(g) \xrightarrow{\Delta} 2EN_{(s)}$
 $2AI(s) + 6HCI(aq) \xrightarrow{} 2AI^{3+}(aq) + 6CI^{-}(aq) + 3H_{2}(g)$
 $2E(s) + 6X_{2}(g) \xrightarrow{} 2EX_{3}(s) (X=F, CI, Br, I)$

P Block

Important compounds of boron

(i) Borax

Na,B4O7 + 7H2O ------- 2NaOH + 4H3BO3 $Na_2B_4O_7.10H_2O \xrightarrow{\Delta} Na_2B_4O_7 \xrightarrow{\Delta} 2NaBO_2 + B_2O_3$ Borax bead test is used for identification.

(ii) Orthoboric acid

$$Na_2B_4O_7 + 2HCI + 5H_2O \longrightarrow 2NaCI + 4B(OH)_3$$

 $B(OH)_3 + 2HOH \longrightarrow [B(OH)_4]^2 + H_3O^4$
 $H_3BO_3 \stackrel{\triangle}{\longrightarrow} HBO_2 \stackrel{\triangle}{\longrightarrow} B_2O_3$

(iii) Diborane

:
$$4BF_3 + 3LiAIH_4 \longrightarrow 2B_2H_6 + 3LiF + 3AIF_3$$

 $2NaBH_4 + I_2 \longrightarrow B_2H_6 + 2NaI + H_2$
 $2BF_3 + 6NaH \longrightarrow B_2H_6 + 6NaF$

properties

Diborane
$$: 4BF_3 + 3LiAlH_4 \longrightarrow 2B_2H_6 + 3LiF + 3AlF_3$$

$$2NaBH_4 + I_2 \longrightarrow B_2H_6 + 2NaI + H_2$$

$$2BF_3 + 6NaH \longrightarrow B_2H_6 + 6NaF$$
perties
$$B_2H_6 + 3O_2 \longrightarrow B_2O_3 + 3H_2O$$

$$B_2H_6(g) + 6H_2O(f) \longrightarrow 2B(OH)_3(aq) + 6H_2(g)$$

$$B_2H_6(g) + 6H_2O(f) \longrightarrow 2B(OH)_3(aq) + 6H_2(g)$$

$$B_2H_6 + 2NMe_3 \longrightarrow 2BH_3.NMe_3$$

$$B_2H_6 + 6NH_3 \longrightarrow 3[BH_2(NH_3)_2]^*[BH_4]^* \longrightarrow 2B_3N_3H_6 + 12H_2$$

Important compounds of carboncarbon

(i) Carbon monoxide

$$2C + O_2 \xrightarrow{\text{Limited air}} 2CO$$

$$HCOOH \xrightarrow{373 \text{ K}} H_2O + CO$$

(ii) Carbon dioxide

$$C + O_2 \xrightarrow{\Delta} CO_2$$

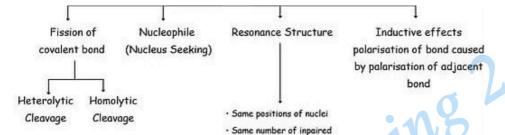
$$CH_4 + 2O_2 \xrightarrow{} CO_2 + 2H_2O$$

Important compounds of silicon

- (i) Silicates
- (ii) Silicon dioxide
- (iii) Zeolites

Organic compounds

Organic reaction mechanism


Organic molecule $\xrightarrow{\text{Attacking} \atop \text{reagent}}$ [Intermediate] \longrightarrow Products(s)

Structural formula

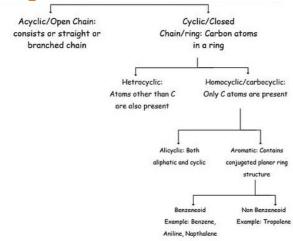
3D Representation: using solid(__) and dashed (|||||)

- (i) Complete ethene C=C
- (ii) Condensed H2C=CH2 ethene
- (iii) Bond-line 2-brome butane

Types of reactions and effects

electrons Examples: Benzene

Hyperconjugation


Delocalisation of electrons of C-H bond of an alkyl group directly attached an atom of unsaturated system. Electromeric Effects:

Complete transfer of a shared pair of electrons to one of atoms joined by a multiple bond on the demand on an attacking agent

Resonance Effects

Polarity prouced in the molecule by interaction of 2 bonds or between a bond and lone pair of electrons of adjacent atom

Classification of organic compounds

Hydrocarbon

Preparation of alkane

$$CH_2=CH_2+H_2\xrightarrow{Pt/Ptd/18}$$
 CH_3-CH_3
 $CH_2CI+H_2\xrightarrow{Zn_1H^2}$ CH_4+HCI

Wurtz reaction

$$CH_3Br + 2Na + BrCH_3 \xrightarrow{Dryether} CH_3 - CH_3 + 2NaBr$$
 $CH_3COO-Na+ + NaOH \xrightarrow{CaO} CH_4 + Na_2CO_3$
 $2CH_3COONa + 2H_2O \xrightarrow{CaO} C_2H_6 + 2CO_2 + H_2 + 2NaOH$

Chemical properties of alkane

H3CCH2OH - CH2=CH2+H2O

Alkenes

Preparation:

$$RC \equiv CR' + H_2$$
 $RC \equiv CR' + H_2$
 $RC \equiv CR' + H_2$

Hydrocarbon

Properties of alkenes

Preparation of alkynes

$$CH_{3}-CH=CH-CH_{3} \xrightarrow{KMnO_{3}/H} \rightarrow 2CH_{3}COOH$$

$$n(CH_{2}=CH_{2}) \xrightarrow{High \ Temp/Pressure} \rightarrow \{CH_{2}-CH_{2}\}-n$$

$$n(CH_{3}-CH=CH_{2}) \xrightarrow{High \ Temp/Pressure} \rightarrow (CH-CH_{2})$$

$$Catalyst \rightarrow (CH-CH_{2})$$

$$Catalyst \rightarrow (CH-CH_{2})$$

$$CaCO_{3} \xrightarrow{\Delta} CaO + CO_{2}$$

$$CaO + 3C \xrightarrow{CaC_{2}} + CO$$

$$CaC_{2} + 2H_{2}O \xrightarrow{Ca(OH)_{2}} + C_{2}H_{2}$$

$$CH_{2}Br-CH_{2}Br + KOH \xrightarrow{Alcabar} H_{2}C=CHBr \xrightarrow{NabH_{5}} CH=CH$$

Properties of alkynes

Hydrocarbon

Properties of benzene

Chemical Properties:

Preparation of aromatic compounds

Environmental chemistry

- Stratospheric pollution
- Depletion of ozone layer

$$Cl(g) + CH_4(g) \longrightarrow CH_3(g) + HCl(g)$$